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Abstract. Within the framework of a Master Equation scheme, we address the dynamics of adsorbed
molecules (a fundamental issue in surface physics) and study the diffusion of particles in a finite cubic
lattice whose boundaries are at the z = 1 and the z = L planes where L = 2; 3; 4; . . ., while the x and
y directions are unbounded. As we are interested in the effective diffusion process at the interface z = 1,
we calculate analytically the conditional probability for finding the particle on the z = 1 plane as well
as the surface dispersion as a function of time and compare these results with Monte Carlo simulations
finding an excellent agreement. These results show that: there exists an optimal number of layers that
maximizes 〈r2(t)〉 on the interface; for a small number the layers the long-time effective diffusivity on
the interface is normal, crossing over abruptly towards a subdiffusive behavior as the number of layers
increases.

PACS. 05.40.Fb Random walks and Levy flights 02.50.Ey Stochastic processes 05.10.Ln Monte Carlo
methods 46.65.+g Random phenomena and media

1 Introduction

The dynamics of adsorbed molecules are not only a fun-
damental issue in interface science but are also crucial
to a large number of emerging technologies (see e.g. [1]
and references therein). Adsorption at solid-liquid inter-
faces arises, for instance, in the biological context (e.g.
in protein deposition [2–4]), in solutions or melts of syn-
thetic macromolecules [5–8], in colloidal dispersions [9],
and in the manufacture of self-assembled mono- and multi-
layers [1,10–12].

Besides in-surface self-diffusion of individual molecules
and surface visco-elasticity (for the liquid-fluid interface),
in reference [1] another mechanism—called bulk-mediated
surface diffusion—was identified and explored. This mech-
anism arises at interfaces separating a bulk phase (typi-
cally a liquid) and a second phase which may be either
solid, liquid, or gaseous. Whenever the adsorbed species
are soluble in the bulk phase, adsorption-desorption pro-
cesses occur continuously. These processes generate sur-
face displacement because desorbed molecules undergo
Fickian diffusion in the bulk phase, and are later re-
adsorbed elsewhere. When this process is repeated many
times, an effective diffusion results for the molecules on
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the interface. Among other results, it was found in ref-
erence [1] that when the re-adsorption time is much less
than the desorption one, anomalous interface diffusion oc-
curs on time scales less than the surface retention time. In
particular, the variance of the adsorbate molecule position
exhibits a superdiffusive behavior (the molecules execute
a bulk-mediated Lévy walk on the interface, with an ex-
ponent 3/2).

In a previous work [13] we set up a Master Equation
scheme to describe the mechanism of bulk-mediated sur-
face diffusion in a model consisting of a semi-infinite cubic
lattice. From the analytical solution of this model, the fol-
lowing results were obtained:

1. For t → ∞, the effective diffusion on the interface (first
layer of the lattice) is always subdiffusive (the vari-
ance of the position grows as t1/2) regardless of the
desorption rate δ. Similarly, the probability to find the
particle on the interface at time t decays as t−1/2, in-
dependently of δ.

2. At finite times, the growth of the variance can be fitted
with a tε law. The parameter ε depends on the range of
time considered and the values of the adsorption and
diffusion constants, increasing rapidly as δ decreases
and saturating at a value compatible with the one re-
ported in reference [1].
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3. An effective continuous-time random walk (CTRW)
description (without conservation of probability) was
derived on the interface.

Since the important case of a bounded bulk phase
can also be cast in this formalism, in the present work
we assume that the bulk phase consists of L monolay-
ers. Since our main goal is the observation of an effec-
tive diffusion process at the interface z = 1 (mediated by
Fickian diffusion through the remaining layers), in Sec-
tion 2 we retrace—for a finite number of layers—the steps
performed in Section 2 of reference [13], and calculate an-
alytically the Laplace transforms of the following directly
measurable functions of time:

– the variance 〈r2(t)〉 of the position r ≡ (x, y) on the
interface;

– the conditional probability Pz=1(t) ≡
∑

x,y P (x, y, z =
1; t|0, 0, 1; t = 0) to find the particle on the interface at
time t, if it was initially at (0,0,1).

For an arbitrary (finite) number of layers, however, the
Laplace transform usually cannot be analytically inverted.
This forces us to employ numerical inversion methods
whose efficacy must be tested against analytically solvable
cases, like the L = 2 one. Thus—in order to perform such
a comparison—we devote Section 3 to obtain and discuss
the time dependence of the aforementioned magnitudes
for the bilayer case. In Section 4 we test the numerical in-
version method not only against the analytical solution of
the L = 2 case, but also against Monte Carlo simulations
(like in Ref. [13]). Moreover we investigate the transition
from multilayer to bulk regime, and find two interesting
results:

1. there exists an optimal number of layers that maxi-
mizes 〈r2(t)〉 on the interface (a measure of the effec-
tive diffusivity);

2. up to about that thickness, the long-time effective dif-
fusivity on the interface has normal character, and
crosses over abruptly towards a subdiffusive behavior
as the number of layers increases further.

2 The model

Let us start with the problem of a particle making a ran-
dom walk in a finite cubic lattice. The bulk is bounded in
the z direction where the particles can move from z = 1
to z = L. The x and y directions remain unbounded. The
position of the walker is defined by a vector r whose com-
ponents are denoted by the integer numbers n, m, l corre-
sponding to the directions x, y and z respectively.

The probability that the walker is at (n, m, l) (where
(n, m, l) indicate discrete coordinates at the (x, y, z)
space) for time t given it was at (0, 0, l0) at t = 0,
P (n, m, l; t|0, 0, l0, t = 0) = P (n, m, l; t), satisfies the fol-

lowing master equation

Ṗ (n, m, 1; t) = γP (n, m, 2; t)− δP (n, m, 1; t)

+ α1[P (n − 1, m, 1; t) + P (n + 1, m, 1; t)

− 2P (n, m, 1; t)]

+ β1[P (n, m − 1, 1; t) + P (n, m + 1, 1; t)

− 2P (n, m, 1; t)],

for l = 1

Ṗ (n, m, 2; t) = α[P (n − 1, m, 2; t) + P (n + 1, m, 2; t)

− 2P (n, m, 2; t)]

+ β[P (n, m − 1, 2; t) + P (n, m + 1, 2; t)

− 2P (n, m, 2; t)]

+ γP (n, m, 3; t) + δP (n, m, 1; t)

− 2γP (n, m, 2; t),

for l = 2

Ṗ (n, m, l; t) = α[P (n − 1, m, l; t) + P (n + 1, m, l; t)

− 2P (n, m, l; t)]

+ β[P (n, m − 1, l; t) + P (n, m + 1, l; t)

− 2P (n, m, l; t)]

+ γ[P (n, m, l + 1; t) + P (n, m, l − 1; t)

− 2γ[P (n, m, l; t)],

for 3 ≤ l ≤ L − 1

Ṗ (n, m, L; t) = γP (n, m, L − 1; t) − γP (n, m, L; t)

+ α[P (n − 1, m, L; t) + P (n + 1, m, L; t)

− 2P (n, m, L; t)]

+ β[P (n, m − 1, L; t) + P (n, m + 1, L; t)

− 2P (n, m, L; t)],

for l = L. (1)

where α, β and γ are the bulk transition probabilities per
unit time in the x, y and z directions respectively, and δ is
the desorption probability per unit time from the bound-
ary plane z = 1.

It is important to note that the model presented in
equation (1), allows the possibility that the particles can
move in the plane z = 1 with temporal frequencies α1 in
the x direction and β1 in the y direction. If these tempo-
ral frequencies are equal to zero, the motion through the
z = 1 plane is exclusively due to the dynamics across the
bulk. In addition we can observe that this is a finite set
of L equations. This fact establishes an important differ-
ence with the infinite set of equations presented in [13], a
crucial difference because this generates different solutions
to the problem. In order to solve this finite set of equa-
tions, we take the Fourier transform with respect to the x
and y variables, and the Laplace transform in the t vari-
able. After these transformations, we obtain the following
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set of equations

sG(kx, ky, 1; s) − P (kx, ky, 1, t = 0) = γG(kx, ky, 2; s)

− δG(kx, ky, 1; s) + A1(kx, ky)G(kx, ky, 1; s), for l = 1
sG(kx, ky, 2; s) − P (kx, ky, 2, t = 0) =

A(kx, ky)G(kx, ky, 2; s) + δG(kx, ky, 1; s)
+ γG(kx, ky, 3; s) − 2γG(kx, ky, 2; s),

for l = 2

sG(kx, ky, l; s) − P (kx, ky, l, t = 0) =
A(kx, ky)G(kx, ky, l; s) + γ [G(kx, ky, l − 1; s)

+γG(kx, ky, l + 1; s) − 2γG(kx, ky, l; s)] ,
for 3 ≤ l ≤ L − 1

sG(kx, ky, L; s) − P (kx, ky, L, t = 0) =
A(kx, ky)G(kx, ky, L; s) − γG(kx, ky, L; s)

+ γG(kx, ky, L − 1; s), for l = L, (2)

where we have defined

G(kx, ky, l; s) = G(kx, ky, l; s|0, 0, l0; t = 0)

=
∫ ∞

0

e−st
∞∑

n,m,−∞
ei(kxn+kym)P (n, m, l; t)dt

= L

[ ∞∑

n,m,−∞
ei(kxn+kym)P (n, m, l; t)

]

, (3)

L indicates the Laplace transform of the quantity inside
the brackets, and

A(kx, ky) = 2α [cos(kx) − 1] + 2β [cos(ky) − 1] , (4)

A1(kx, ky) = 2α1 [cos(kx) − 1] + 2β1 [cos(ky) − 1] . (5)

Using the matrix formalism, equation (2) can be written as
[
sĨ − H̃

]
G̃ = Ĩ , (6)

where G̃ is an L × L array that has the following compo-
nents

G̃ll0 = [G [kx, ky, l; s|n, m, l0; t0]] , (7)

Ĩ is the identity matrix and H̃ is a tri-diagonal matrix
whose components are

H̃ =














−δ + A1 γ 0 0 · · · 0 0 0
δ C γ 0 · · · 0 0 0
0 γ C γ 0 0 0
· · · · · · 0 0 0
· · · · · · 0 0 0
· · · · · · 0 0 0
0 0 0 0 · · · γ C γ
0 0 0 0 · · · 0 γ −γ + A














,

the C parameter is defined as

C = −2γ + A(kx, ky). (8)

In order to find the solution to the equation (6), we
decompose the H̃ matrix according to

H̃ = A(kx, ky)Ĩ + H̃0 + H̃1 + H̃2, (9)

where

H̃0 =














−2γ γ 0 0 · · · 0 0 0
γ −2γ γ 0 · · · 0 0 0
0 γ −2γ γ · · · 0 0 0
· · · · · · 0 0 0
· · · · · · 0 0 0
· · · · · · 0 0 0
0 · · · · · γ −2γ γ
0 · · · · · 0 γ −γ














,

(H̃1)ij = ∆1

{
1 if i = j = 1
0 otherwise

(H̃2)ij = ∆2

{
1 if i = 2 and j = 1
0 otherwise

and

∆1 = −δ − [−2γ + A(kx, ky) − A1(kx, ky)
]
,

∆2 = δ − γ. (10)

We also define

G̃0 =
[
sĨ − (A(kx, ky)Ĩ + H̃0)

]−1

,

G̃1 =
[
sĨ − (A(kx, ky)Ĩ + H̃0 + H̃1)

]−1

. (11)

A formal solution of the equation (6) is

G̃ =
[
sĨ − H̃

]−1

. (12)

We can show, by applying the Dyson formula [16], that

G̃ll0 = G̃1
ll0 +

∆2 G̃1
l2 G̃1

1l0

1 − ∆2 G̃1
12

, (13)

G̃1
ll0 = G̃0

ll0 +
∆1 G̃0

l1 G̃0
1l0

1 − ∆1 G̃0
11

. (14)

The solution for G̃0
ll0

can be obtained analytically. The
result is

G̃0
ll0 =

L−1∑

i=0

flifl0i
1

2γ + (s − A(kx, ky)) − 2γ cos(qi)
, (15)

where
fli = K sin(lqi), (16)

and

qi =
(2i + 1)π
2L + 1

. (17)

The constant K is obtained by exploiting the orthonor-
mality relations for the fli functions

∑

i=1

filfij = δlj . (18)
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The completeness relation for the fli functions is writ-
ten as ∑

i=1

flifji = δlj . (19)

The corresponding expression for K is

K =
2√

2L + 1
. (20)

We are now able to find the statistical quantities which
describe the diffusion problem over the surface. We are
interested in the probability of finding a particle in the
site (n, m, l = 1) at time t given it was in (0, 0, l = 1) at
t = 0. This quantity is obtained by applying the inverse
Laplace transform on the G̃11 matrix element. Another
direct measurable experimental magnitude [15,16] is the
variance (〈r2(t)〉) of the probability distribution at time t
over the plane

〈r2(t)〉plane. (21)

This quantity measures the particles dispersion over the
surface and has a direct relation to the diffusion coefficient.
When P (n, m, l = 1; t|0, 0, l0 = 1; t = 0) is known, the
variance is calculated in the following manner

〈r2(t)〉plane =
∞∑

n,m=−∞
P (n, m, l = 1; t|0, 0, l0 = 1; t = 0)

(
n2 + m2

)
.

(22)

Due to the symmetric properties for the diffusion along
the x and y directions we have 〈x(t)〉 = 〈y(t)〉 = 0.

Finally the variance in the Laplace space can be ob-
tained as

〈r2(s)〉plane = −
[

∂2

∂k2
x

+
∂2

∂k2
y

] [
G̃11

] ∣
∣
∣
∣
kx=ky=0

. (23)

3 The bilayer case

So far, we have developed a general theory describing the
important problem of the diffusion of a particle system
over a surface which is surrounded by a bounded bulk.
The expressions we found, are in the Laplace space and
obtaining the inverse transform is usually a non trivial
task.

In this section we restrict the problem to finding a
particular solution, considering the case of a system of
particles moving inside a bilayer, that is the space formed
by the surface where we investigate the movement of the
particles and a second layer. To obtain the conditional
probability Pz=1(t) ≡ ∑

x,y P (x, y, z = 1; t|0, 0, 1; t = 0)
to find the particle on the interface at time t, if it was
initially at (0,0,1), we take G̃11 with L = 2 and evaluate
it for kx = ky = 0. Then we obtain the inverse Laplace
transform. The result is

Pz=1(t) =
γ

(γ + δ)
+

δ

(γ + δ)
exp [−(γ + δ)t]. (24)

This expression establishes that this probability is only a
function of the temporal adsorption and desorption rates
and does not depend on the temporal rates on the plane.
From this equation, we can also obtain the initial condi-
tion of the problem by evaluating equation (24) at t = 0,
obtaining Pz=1(t = 0) = 1.

If we consider the long time limit, the expression has
the following behavior

lim
t→∞ Pz=1(t) =

γ

γ + δ
. (25)

This expression shows that, at this limit, the probability
of finding the particle in the z = 1 plane does not decay
to zero (as happens in unbounded systems [13]), but it
approaches an asymptotic value which is a function of the
ratio of the temporal rates.

If the adsorption rate γ is large (compared with the
desorption rate δ), then the probability is large, the par-
ticles go back to the plane frequently. On the other hand,
if the desorption rate is large, the particles go away from
the surface and so the probability decays. These behaviors
are shown and quantified by equation (24).

In the case of the variance, the result we have obtained
can be decomposed as follows

〈
r2(t)

〉
=

〈
r2(t)

〉
plane

+
〈
r2(t)

〉
vol

, (26)

where

〈r2(t)〉plane =
(
α1 + β1

)
( −2γδ

(γ + δ)3
(exp [−(γ + δ)t] − 1)

+
2γδ + δ2

(γ + δ)2
t exp [−(γ + δ)t] +

γ2

(γ + δ)2
t

)

,

(27)

〈r2(t)〉vol = (α + β)
(

4γδ

(γ + δ)3
(exp [−(γ + δ)t] − 1)

+
2γδ

(γ + δ)2
t exp [−(γ + δ)t] +

2γδ

(γ + δ)2
t

)

.

(28)

From equations (26, 27) and (28) we can make the follow-
ing observations. Firstly, the variance can be decomposed
into two contributions, one corresponding to the particle
movement across the bulk and the other to the surface
movement. The dependence of the variance on the time
rates parallel to the surface is linear, while in these same
relations, the adsorption and desorption rates enter in a
more complicated way. The functional form obtained is
similar for both movements (which however are noninde-
pendent).

For a large evolution time, the mean square distance
or dispersion grows linear with time; each diffusive pro-
cess has its own slope or growing rate (these slopes are
associated with the diffusion coefficient). However, this is
an expected behavior due to the model we are using. The
other contributions are transient ones, that decay with
a time constant τ = (γ + δ)−1, hence, the stronger the
adsorption or desorption, the faster is the decay of these
contributions.
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Fig. 1. Temporal evolution of the Pz=1(t). We have shown
two cases: (i) � represent theoretical points (see Eq. (24)),
the continuous line indicates the theoretical-numerical results
and © are the simulations data for δ = 0.1; (ii) � corresponds
to theoretical points, the dashed line represents theoretical-
numerical results and � the simulations data for δ = 0.5.

4 Results

In this section we show the theoretical results, including
some special numerical procedures, and make the compar-
ison with Monte Carlo simulations. In all simulations we
have fixed the following parameters: α = β = γ = 1 and
α1 = β1 = 0, and have averaged over 106 realizations.

In Figure 1 we present the theoretical-numerical (that
is using a computer program to calculate the inverse
Laplace transform [17]), theoretical results obtained from
equation (24) and simulation results for the temporal evo-
lution of the probability to find the system on the surface
for the bilayer case. Here we show the curves for two values
of the desorption rate δ. As is apparent from the figure,
there is excellent agreement between the theoretical and
simulation results. Such excellent agreement indicates that
the numerical procedure for obtaining the inverse Laplace
transform is a reliable tool, and that we can trust their
results in those cases where analytical results are not ac-
cessible (for instance the cases with larger number of lay-
ers that we will consider in the following). In Figure 2,
and again for the bilayer case, we depict for the variance
(〈r2(t)〉), both theoretical and numerical results. Again
the agreement is excellent.

In Figures 3 and 4 we present the Pz=1(t) and the
〈r2(t)〉 but now for a number of layers larger than two.
Here we compare the theoretical and numerical results
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Fig. 2. Time evolution of 〈r2〉. We have represented two cases:
(i) � represent theoretical points (see Eq. (24)), the continuous
line indicates the theoretical-numerical results and © are the
simulation data for δ = 0.1; (ii) � correspond to theoretical
points, the dashed line represents theoretical-numerical results
and � the simulations data for δ = 0.5.

again. We remark that the theoretical results were ob-
tained fitting the inverse Laplace transformation of equa-
tions (15) and (23) numerically. Again we have found an
excellent agreement between theoretical and simulation
results.

Figures 5, 6 and 7 correspond to an analysis for the
asymptotic behavior of the finite system. Figure 5 depicts
the curve obtained for the 〈r2〉 as a function of L (the
number of layers) for three different and large observa-
tional times: t = 1200, 1300, 1500. The insert shows that
for these times, the system is well inside the asymptotic
region. As can be seen from the figure, there is a maxi-
mum in the motion of the system. In other words, there is
an “optimal” number of layers for which the system can
spread more rapidly. For a larger number of layers, the
system converges to an asymptotic limit. This is reason-
able due to the fact that the finiteness of the system tends
to disappear.

Figure 6 depicts the same behavior as Figure 5 but
now we have fixed an observational time (t = 1500) and
we have used the desorption rate (δ) as parameter. The
figure also shows the maximum on the number of layers
again but from this figure we can see that this maximum
moves towards the lower layers as the desorption rate in-
creases. The insert shows the time evolution of 〈r2〉 for
large values of L. We compare this behavior with the one
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Fig. 3. Time evolution of the Pz=1(t). We have represented
two cases: (i) the continuous line depicts the theoretical result
obtained numerically and © are the simulation points for 3 lay-
ers; (ii) the dashed line represents theoretical results and � the
simulations for 4 layers.
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Fig. 4. Time evolution of the variance 〈r2〉. We have repre-
sented two cases: (i) the continuous line depicts the theoretical
result obtained numerically and © are the simulation points
for 3 layers; (ii) the dashed line represents theoretical results
and � the simulation for 4 layers.

Fig. 5. 〈r2〉 vs. L for the case δ = 0.02. The © correspond
to an observation time t = 1200, � is for t = 1300 and + for
t = 1500. The insert shows the Pz=1(t) vs. L. The system is in
the asymptotic region.
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Fig. 6. 〈r2〉 vs. L. We have represented the case for t = 1500.
The © correspond to a desorption rate δ = 0.02, while � is
for δ = 0.04 and + for δ = 0.06. Insert: time evolution of
〈r2〉 for δ = 0.02 and L = 100 (©), and for δ = 0.06 and
L = 100 (�). The continuous lines correspond to the infinite
bulk behavior [13].
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Fig. 7. 〈r2〉 vs. L, The © corresponds to a δ = 1.5, � to a
δ = 2. Insert: Pz=1(t) vs. L for these desorption rates.

corresponding to the infinite case [13]. From this figure
we can say that the finite system behaves, for the used
parameters, as an infinite one when the number of layers
is L > 50.

If the parameter δ is increased, the maximum finally
disappears as can be seen in Figure 7. This figure shows
two curves for two different δ for t = 1500. The insert
shows the Pz=1(t) for these desorption rates.

Finally we show a fitting of 〈r2(t)〉 as a function of L
for a large evolution time. For fitting purposes we have
used the following function

〈r2(t)〉 = C tε, (29)

where C is a constant and ε is the fitting parameter. In
Figure 8 we depict the results obtained for ε as a function
of L.

We observe two regions: for L ≤ 20 the particles de-
scribe a diffusion movement. In particular this behavior
was shown for the bilayer model. The insert of the fig-
ure shows a zoom for a small number of layers, and for
two different times. The linear behavior is apparent. A
second region appears for L > 20 where the movement re-
sults subdiffusive. For large L the ε parameter approaches
an asymptotic value equal to 0.5. This situation was pre-
dicted [13] for infinite systems.

Fig. 8. ε vs. L. Circles correspond to δ = 0.5 and squares to
δ = 2. The time evolution was t = 2000. Insert: ε vs. L for a
small number of layers and t = 2000 (�), t = 3000 (©). The
line is a linear fitting of the data.

5 Conclusions

We have studied the evolution of particles diffusing in a
volume, but have analyzed the statistical properties of
their evolution on a surface. The diffusion can be per-
formed on the surface itself or across the bulk surrounding
the surface. In this work we focus on the particle diffusion
due to the movement across the bulk, that is we have con-
sidered the bulk mediated surface diffusion of the particles.
The main feature of the bulk is its finiteness in one direc-
tion (the axial one). The other directions are unbounded.
This work complements a previous study [13] in which we
have analyzed the particle diffusion in a semi-infinite bulk.

Here we have presented a theoretical model based on
a set of Master Equations which describe the movement
of particles over a simple cubic lattice. This model is gen-
eral in the sense that we include both kind of particle
movement: on the surface and on the bulk. We solved this
problem by using techniques of the Laplace and Fourier
transformation and exploiting Dyson’s formula. It is worth
remarking here that the model can describe the evolution
of the system everywhere in the bulk, and the evolution
of the system for all time. We particularize to the study
over a single plane, i.e. the surface. We have obtained gen-
eral solutions in the Laplace space for the Pz=1(t) and
the 〈r2(t)〉 for any kind of bulk.
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In order to find an analytical solution in space and
time, we have particularized the problem to the bilayer
case. The expressions obtained with this assumption were
compared with Monte Carlo simulations, finding excel-
lent agreement. Moreover we were able to handle cases
with more layers. In these cases, we have obtained the
inverse Laplace transform using numerical methods, and
compared these results with Monte Carlo simulations. The
agreement between both results are excellent again. As
indicated above, the numerical procedure to obtain the
inverse Laplace transform is a reliable tool, and we have
shown that we can trust their results in those cases where
analytical results are not accessible.

Finally we have studied the behavior of the spreading
in the asymptotic region as a function of the number of
layers of the system. We observed an “optimal” number of
layers for which 〈r2(t)〉 reaches its maximum value. It is
worth remarking here that this effect occurs in the limit of
“strong adsorption”, that is when the relation δ

γ is small,
and disappears in the limit of “weak adsorption”, that is
when δ

γ is large.
A possible generalization of the present and the previ-

ous related work [14] consists in considering the possibility
of non Markovian dynamics, and study the effect of such
dynamics on the statistical features of the system. This is
the subject of further work.
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